Forkhead transcription factor FOXO1 is a direct target of progestin to inhibit endometrial epithelial cell growth.
نویسندگان
چکیده
PURPOSE AND EXPERIMENTAL DESIGN Despite the therapeutic utility of progestin in invasive and preinvasive endometrial neoplasias, the molecular mechanisms through which it exerts inhibitory effects on endometrial epithelial growth are largely unknown. The aim of the study was to clarify the molecular mechanisms of progestin action to endometrial epithelial cells using originally established in vitro and in vivo treatment models for immortalized and transformed endometrial epithelial cell lines that express progesterone receptor. RESULTS In this model, progestin effectively inhibited the cell growth, inducing G0/G1 arrest rather than apoptosis without p21/WAF-1 induction. Using DNA microarray analysis, we identified 24 genes whose expression increased more than 10-fold on progestin treatment. Of these genes, we paid special attention to forkhead box transcription factor FOXO1, known as a key gene for endometrial decidualization. Progestin markedly induced FOXO1 gene expression mainly in the nuclei in vitro and in vivo. This induction was not due to the canonical activation of FOXO1 via protein dephosphorylation but due to FOXO1 promoter activation and mRNA induction. siRNA inhibition of FOXO1 significantly attenuated the effects of progestin to inhibit endometrial epithelial cell growth. Disrupting Akt activity by the introduction of the dominant negative form of Akt increased nuclear FOXO1 accumulation and enhanced the effect of progestin. CONCLUSION These findings suggest that FOXO1 is a direct target of progestin, implicating novel molecular mechanisms of progestin to eradicate endometrial neoplasia.
منابع مشابه
Cancer Therapy: Preclinical Forkhead Transcription Factor FOXO1 is a Direct Target of Progestin to Inhibit Endometrial Epithelial Cell Growth
Purpose and experimental design: Despite the therapeutic utility of progestin in invasive and preinvasive endometrial neoplasias, the molecular mechanisms through which it exerts inhibitory effects on endometrial epithelial growth are largely unknown. The aim of the study was to clarify the molecular mechanisms of progestin action to endometrial epithelial cells using originally established in ...
متن کاملDysregulation of In Vitro Decidualization of Human Endometrial Stromal Cells by Insulin via Transcriptional Inhibition of Forkhead Box Protein O1
Insulin resistance and compensatory hyperinsulinemia are characteristic features of obesity and polycystic ovary syndrome, and both are associated with reduced fertility and implantation. There is little knowledge about the effect of insulin on the decidualization process and previous findings are contradictory. We investigated the effect of insulin on the regulation of forkhead box protein O1 ...
متن کاملForkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1
The morbidity and mortality associated with endometrial cancer (EC) has increased in recent years. Regarded as a tumor suppressor, forkhead transcription factor 1 (FOXO1) has various biological activities and participates in cell cycle progression, apoptosis and differentiation. Notably, FOXO1 also functions in the regulation of lipogenesis and energy metabolism. Lipogenesis is a feature of can...
متن کاملClearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senesc...
متن کاملForkhead Transcription Factor FOXO1 Inhibits Angiogenesis in Gastric Cancer in Relation to SIRT1.
PURPOSE We previously reported that forkhead transcription factors of the O class 1 (FOXO1) expression in gastric cancer (GC) was associated with angiogenesis-related molecules. However, there is little experimental evidence for the direct role of FOXO1 in GC. In the present study, we investigated the effect of FOXO1 on the tumorigenesis and angiogenesis in GC and its relationship with SIRT1. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2011